## LC 2015: Paper 1

## Question 6 (25 marks)

Question 6 (a)
(i) Bank A: Monthly interest rate $r_{\mathrm{M}}=0 \cdot 35 \% \Rightarrow i_{\mathrm{M}}=0.0035$
$\left(1+i_{\mathrm{M}}\right)^{12}=\left(1+i_{\mathrm{A}}\right)$, where $i_{\mathrm{A}}$ is the annual interest rate
$(1+0 \cdot 0035)^{12}=\left(1+i_{\mathrm{A}}\right)$
$(1 \cdot 0035)^{12}=\left(1+i_{\mathrm{A}}\right)$
$1 \cdot 042818=1+i_{\mathrm{A}}$
$i_{\mathrm{A}}=0.042818$
$\therefore$ Annual percentage rate (APR) $r_{\mathrm{A}}=4 \cdot 28 \%$ [Given to 3 significant figures]
(ii) Bank B: Annual interest rate $r_{\mathrm{A}}=4 \cdot 5 \% \Rightarrow i_{\mathrm{A}}=0.045$

Monthly interest rate: $i_{\mathrm{M}}=$ ?, $r_{\mathrm{M}}=$ ?
$\left(1+i_{\mathrm{M}}\right)^{12}=(1+0.045)$
$\left(1+i_{\mathrm{M}}\right)^{12}=(1 \cdot 045)$
$i_{\mathrm{M}}=1.045^{\frac{1}{12}}-1=0.0036748$
$\therefore r_{\mathrm{M}}=0.367 \%$ [Given to 3 significant figures]

## Marking Scheme Notes

Question 6 (a) (i) (ii) [Scale 10C (0, 4, 8, 10)]
4: - Correct formula in either part

- Correct substitution in incorrect formula

8: - Any one section correct
Note: Rate as $0.367 \%$ or 0.00367 gets High Partial.

## Question 6 (b)

## Formulae and Tables Book

Financial mathematics: Amortisation - mortgages and loans
(equal repayments at equal intervals) [page 31]

$$
A=P \frac{i(1+i)^{t}}{(1+i)^{t}-1}
$$

$t=$ Time period (in years)
$i=$ (Annual) rate of interest expressed as a decimal
$A=$ (Annual) repayment amount
$P=$ Principal
Note: The time period can be months or weeks instead of years provided the interest rate is given for that time period.

Method 1: Use the amortisation formula
Time period: Months
$r_{\mathrm{M}}=0.35 \% \Rightarrow i_{\mathrm{M}}=0.0035$

$$
\begin{aligned}
A & =P \frac{i(1+i)^{t}}{(1+i)^{t}-1} \\
& =80000 \frac{0 \cdot 0035(1 \cdot 0035)^{120}}{(1 \cdot 0035)^{120}-1} \\
& =€ 817 \cdot 59 \approx € 818
\end{aligned}
$$

Method 2: Use a geometric series
$\frac{A}{1 \cdot 0035}+\frac{A}{1 \cdot 0035^{2}}+\ldots+\frac{A}{1 \cdot 0035^{120}}=80000$
$A\left[\frac{1}{1 \cdot 0035}+\frac{1}{1 \cdot 0035^{2}}+\ldots+\frac{1}{1 \cdot 0035^{120}}\right]=80000$
$A\left[\frac{\frac{1}{1 \cdot 0035}\left(1-\left(\frac{1}{1 \cdot 0035}\right)^{120}\right)}{1-\frac{1}{1 \cdot 0035}}\right]=80000$
$\therefore A=\frac{80000\left(1-\frac{1}{1 \cdot 0035}\right)}{\frac{1}{1 \cdot 0035}\left(1-\left(\frac{1}{1 \cdot 0035}\right)^{120}\right)}=€ 817 \cdot 59 \approx € 818$
Formulae and Tables Book
Sequences and series:
Geometric series [page 22]

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

## Marking Scheme Notes

Question 6 (b) [Scale 15C (0,5, 10, 15)] Note: two solutions
1st solution
5: • Any correct step, i.e. correct formula
10: - Substitution in correct formula
or
2nd solution
5: - Correct equation.

- Listing some terms
- Some substitution

10: - Complete substitution and effort at evaluation.
Note: If $A$ and 80000 interchanged and remainder of work correct, may get High Partial credit.

